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ABSTRACT 

Wind turbines, generators, motor-derives, and other spinning equipment are particularly vulnerable to 

catastrophic failures caused by mechanical issues. Vibrations in the structure of the equipment might be 

caused by various mechanical problems. The early detection and diagnosis of underlying mechanical defects 

via online vibration monitoring helps minimize catastrophic breakdowns. It is difficult to extract unique 

vibration characteristics that both enhance fault classification performance and are resistant to different 

types of noise in vibration signals. Several vibration-features have been suggested in the literature, all based 

on statistical and signal processing principles. Based on what is already known about the properties of 

vibration signals from various kinds of faults, several vibration-features were developed. Latest state-of-

the-art performance on image and voice recognition tasks was achieved by automatically extracting features 

using unsupervised learning in deep neural networks. Hence, we propose feature learning on raw vibration 

signals as an alternative to feature engineering in the hopes of extracting vibration features that might 

enhance the defect diagnosis performance of the classifiers that follow. We examined Convolutional Neural 

Networks for unsupervised feature learning on vibration signals and Denoising Auto-Encoders for robust 

and noise-invariant vibration feature extraction for this purpose. We suggested a hybrid deep model that has 

a single classification layer on top of a Multi-channel Convolutional Neural Network and a stack of 

Denoising Auto-Encoders (MCNN-SDAE). We tested the suggested model against others that used 

vibration characteristics derived from traditional statistical and signal processing methods to see how well 

it could detect and classify faults. To ensure that all of the models were performing as expected, we used 

vibration data from an experimental test-rig that was built to analyze the vibration characteristics of bearing-

related defects as a benchmark. 

Keywords 
Vibration-features learning, equipment condition monitoring, bearing fault identification, machine learning, online monitoring. 

1. INTRODUCTION 

2. Gear boxes, shafts, turbines, generators, motor-drives, and other rotating equipment are prone to 

mechanical failures as a result of the extreme working conditions and constantly changing loads. To 

make sure these equipment are running safely, reliably, and economically, online condition 

monitoring is crucial [1]. By identifying and locating faults early on, it helps lower the cost of 

maintenance and catastrophic breakdowns. In order to assess the state of equipment using data on 

vibration, noise, and process parameters, many online monitoring methods have been explored [2]. 

The most well-known method for tracking the health of rotating machinery, however, is vibration 

analysis [3]. Many crucial components, such as shafts, couplers, bearings, gearboxes, etc., undergo 

regular failures. Because they are sensitive to a broad variety of problems associated with rotating 

equipment and are easy to acquire, vibration signals are often used [4].  
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Research into the identification and detection of faults utilizing analytical, signal processing, and 

statistically-based vibration signal properties is ongoing. When using passive-mode, defect detection is 

done manually using characteristics based on expert knowledge [5]. In contrast, a classification/fault 

diagnosis model based on machine learning receives the extracted information from the active-mode 

[6]. The data-driven character and real-time performance of machine learning approaches make them 

particularly appealing. Extracting features and training a classifier model using vibration-features is a 

common machine learning approach. The inherent noise and high dimensionality of raw vibration data 

make it unsuitable for direct usage as a defect diagnosis system feature. Consequently, dimensionality 

reduction by compact feature extraction from raw vibration signals without loss of distinctive 

information is necessary. Additionally, the quality and representability of the features retrieved from 

raw data are crucial to the effectiveness of classifiers based on machine learning. Wavelet packet 

transform (WPT), Fast Fourier Transform (FFT), cepstrum information, Short Time Fourier Transform 

(STFT), empirical mode decomposition (EMD), and time-domain statistical features (TDSF) are in the 

list of vibration features that have been suggested in the literature, among others [5]. Each of these 

feature representations has advantages and disadvantages, and [5] discusses them at length. The 

aforementioned vibration characteristics have been used to develop several defect diagnosis models that 

include appropriate classifiers as SVM, ANN, BPNN, PNN, Fuzzy Inference, ANFIS, multinomial, and 

others. 

 

 

3. logistical model. Using an example TDSF-ANN/SVM/MLP, WPT-BPNN/SVM/multinomial 

logistic regression, and many more feature-classifier combinations are available [7–14]. The majority 

of the research on these feature-classifier combinations has focused on problems with gearboxes, 

couplings, bearings, and shafts. Therefore, the majority of the characteristics were developed by 

using prior-knowledge derived from experts on the distinctive vibration signatures associated with 

these defects. However, in mechanical systems (such as pumps and engines), which share this 

vibration characteristic, some of the designed characteristics have proven effective in defect 

diagnostics. [15][16]. Nevertheless, these properties aren't very useful for general vibration 

monitoring due to their shallowness and fault-specificity. Mechanical systems, such as rotors, turbine 

engines, aircraft frames, loose components, systems for high-pressure/velocity fluid flows, etc., 

produce vibration signals with semantic and dynamic properties unique to such systems. Therefore, 

feature-learning is best for capturing domain-specific failure attributes that lead to good performance, 

as opposed to feature-extraction. When it's hard to come up with defining characteristics for a task, 

the feature-learning strategy may help reduce reliance on problem-specific expertise.  

Recent state-of-the-art performance on image and voice recognition tasks has been achieved using 

abstract level feature extraction in deep multi-layered neural networks using unsupervised learning 

[17][18]. Researchers looked at the possibility of deep models extracting more abstract 

representations on typical vibration characteristics and raw data for the aim of equipment defect 

diagnosis [19]. Consequently, there are a number of deep-models available for monitoring equipment 

status based on vibration. Some examples of these are Deep Belief Networks (DBN) [20–23], Auto-

Encoder ELM [24], Stacked Denoising Auto-encoders (SDA) [25][26], and CNN-based fault-models 

[25][26]. According to these studies, deep-architectures outperform shallow ones when it comes to 
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defect detection. While deep-models are useful as non-linear classifiers, feature selection is still an 

initial step in these approaches. In order to locate and identify the severity of bearing problems in 

rolling bearings, two prominent deep-models use designed characteristics as base-input: WPT-

DBN[20][22] and TDSF-DBN [27]. In an ideal world, a deep-model could automatically glean the 

discriminative characteristics from datasets. To achieve this, we put forth a deep-hybrid model for 

multi-channel vibration data that combines a Convolutional Neural Network with a stacked 

denoising-autoencoder for unsupervised feature learning and classification. The conceptualization of 

the suggested approach is based on the unique problems described in section 5.3. Below is the 

article's organizational structure. Section 5.4 discusses the difficulties caused by vibration signals 

and the several deep learning architectures that might be used for mechanical defect modeling based 

on vibration characteristics. How convolutional neural networks (CNNs) learn features from 

vibration signals is covered in Section 5.5. In section 5.6, the suggested deep-hybrid model's design 

is detailed in more detail. A CWRU-benchmark vibration data-set, acquired from an experimental 

test-rig designed to investigate bearing failure diagnosis techniques in particular, is used to verify the 

MCNN-SDAE model [28].  

 

 

4. CHALLENGES IN VIBRATION- BASED FAULT DIAGNOSTICS 
Vibration-based fault diagnosis is a challenging task especially for the case of rotating machinery. Some of the difficulties are due to 

inadequacy of engineered features to capture non-linear fault dynamics hidden in the vibration-data. Vibration signals are often non-

stationary with different time- frequency characteristics which further complicate the feature-representation. Here we identified some 
key contributors to those challenges. 

1- Frequency spectrum of the vibration signal is often analyzed to detect presence of bearing related faults. Bearing specific 
frequencies i.e. BPFO, BPFI and BPF are calculated with the assumption that the rolling elements just roll on the raceways 

and do not exhibit sliding behavior. However, this assumption seldom holds. In practice, a bearing roll-element undergoes a 

combination of rolling and sliding. Consequently, the calculated bearing-frequencies may differ from the actual frequencies 

by a small percentage. This rolling-slipping behavior of bearing manifests itself in the form of frequency shifts. Usually these 
frequency-shifts are dynamic and exhibit a non-linear behavior against different bearing-faults and their severities. 

2- In case of bearing or gear faults the early vibration signals are often non-stationary and are dominated by vibrations from other 

components in the equipment and transmission path. So, the beneficial information in vibration signals may get distorted, 

thereby resulting in a reduced recognition rate. Obtaining useful information from a signal polluted by noise is essential for 

effective fault diagnosis methods. 

3- Multiple simultaneous faults can obfuscate important frequencies 

4- Interference from additional sources of vibration, 
i.e. bearing looseness may also obscure valuable features. 

 
Further, the following deficiencies in classical diagnostic models limit the classification performance especially under above-mentioned 

challenging scenarios. 

1- The features employed in the diagnostic model are manually extracted on the basis of prior knowledge about different fault 

types and the corresponding suitable signal processing techniques that can extract salient features to characterize the 

underlying faults. So the extracted features are specific to a particular diagnosis issue and might not be suitable for other fault 
types. 

2- Many diagnostic models, reported in the literature, uses classifiers that have shallow architectures. It limits the model-ability 

to model complex non- linear relationships for effective fault diagnosis. 

5. POTENTIAL DEEP-LEARNING ARCHITECTURES 
Extracting features from vibration signals that are robust and global is a challenging task. Instead of extracting and selecting features 

manually, methods that can adaptively mine the distinctive features hidden in the measured signals are needed to reflect different health 
conditions of corresponding machinery. Deep learning [17] has the potential to address the 

forementioned deficiencies in current intelligent diagnosis methods. The deep learning is outstanding in its ability to model high-level 

abstractions in the data by using architectures composed of multiple non-linear learning layers. It learns the discriminative features and is 

helpful in tasks where it is difficult to manually develop the characterizing features. 
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The deep-learning research has proposed several architectures e.g., Restricted-Boltzmann-Machine (RBM) and Denoising Auto-encoder 

(DAE) and their variants, to estimate underlying statistical structure in inputs [29][30]. These architectures have been successfully 

employed for unsupervised feature learning during greedy layer-wise training under deep-learning framework. 

However, Convolution Neural Network are specifically interesting due to their unique ability to maintain initial information regardless of 

shift and distortion in the input.. The CNN-models are optimized using an error-gradient algorithm [31]. CNNs are widely used in image 

classification [32] speech-processing tasks [33] and various other applications [34-36]. Feature learning through CNNs have several 
advantages over other deep-architectures. First, hierarichal multiple Convolutional-layers can autonomously learn complex feature 

representations on raw input data. Second, CNNs can effectively exploit the spatial structure in the data through local receptive fields, shared 

filter weights and spatial sub-sampling. In case of a frequency spectrum of a vibration signal, the spatial structure is defined as the ordered 

sequence of frequencies. The convolution operation across frequency provides the CNN-network with immunity to small spectral shifts, 
such as those introduced by slipping artifiacts of the rolling-bearings. Similarly, convolution across time can be useful in capturing temporal 

artifacts introduced by non- stationary vibration signals. Hence, making an effective use of convolution both in time and frequency domain 

might be helpful in extracting robust features on vibration data and could improve the fault detection performance. 

Similarly, classical autoencoders (AEs), that are trained to denoise an artificially corrupted version of their input, were found good at 

learning robust features on input-data.Vincent et.al.[37] further extended the classical denoising autoencoder with greedy layer-wise training 
procedure of deep learning algorithm that allowed stacking of multiple DA’s to construct a deep-model. Building a deep-model by stacking 

greedily- trained classical DA’s is a concise and efficient method that can extract features that are robust and invariant to noises. The 

architecture is interesting for learning robust features from noisy vibration signals. It can improve classification performance for the cases 

in which fault signature may get distorted by secondary vibration sources from other components in the transmission path. 

Considering the advantages of CNN and SDAE architectures, we will investigate a hybrid deep-model for efficient fault diagnosis by 

extracting robust features on underlying raw vibration signal. 

6. FEATURE LEARNING WITH CONVOLUTION NETWORKS 
A Convolution-Neural-Network (CNN) is the variant of a standard neural-network. Contrary to the traditional neural architectures where 

the receptive field for input-layer neurons spans the complete input, the CNNs define a local receptive field on the input. The layers of a 

CNN are referred as convolution layers. The input field is logically divided into small windows which forms the localized receptive 

fields for subsequent convolution-layer. Units /operators/kernels in the convolution layers operate on windowed input and computes features 
of the local region. These convolution-units generate global representations by computing and learning local features. A CNN-layer extracts 

features from the input signal by convolving the input signal with the filter (or kernel) learnt by the convolution-layer. The activation of a 

unit in the CNN- layer represents the result of the convolution operation. The convolutional operation detects patterns captured by the 

kernels, regardless of where the pattern occurs, by computing the activation of a unit on different regions of the same input. In CNNs, the 
activation levels of kernels corresponding to subsets of classes are optimised as part of the supervised training process. A feature map is an 

array of units that shares the same kernel-parameterization (weight vector and bias). Their activation yields the result of the convolution of 

the kernel across the entire input data. The application of the convolution operator to a one-dimensional temporal sequence can be viewed 

as a filter, capable of removing outliers, filtering the data or acting as a feature detector that respond maximally to specific temporal 
sequences within the time- span of the kernel. 

7. HYBRID DEEP-MODEL ARCHITECTURE 
The proposed hybrid-model consists of a multichannel CNN followed by Stacked DAE architecture at the top. A CNN model is trained 

on individual channel to extract abstract-level Vibration-features which characterize the normal and faulty conditions in individual 
channels. First unsupervised pre- training is commenced through convolution auto-encoder (CAE). CNN-model parameters are 

initialized with convolution filters pre-trained by the CAE-model. Finally, supervised training of the CNN-model is done with labeled 

data. After CNN-model training, in the next step the feature- representations at top-layer of CNN-model of each channel (generated via 

forward pass in the CNN) are fused by learning a SDAE-model on CNN-based feature representation. The SDAE helps model the 
collective vibration behavior of rotary system by fusing vibrations-features extracted from multiple channels, monitoring different 

components or proximity in the system. A greedy layer-wise training strategy is employed to stack multiple DAE’s. Each layer extracts 

more abstract-level representation to model non-linearity in the underlying vibration system. Finally, a fully-connected neuron-layer is 

trained for fault classification on the top-encoder-layer of the SDAE-model. Figure 1 depicts the proposed model architecture and 
corresponding processing pipeline. The proposed method is able to mine vibration-features that are robust to noise, consequently could 

achieve high classification performance compared to shallow architectures. 
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Figure 1: Hybrid MCNN-SDAE model architecture and corresponding processing pipeline. 
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8. MODEL SET-UP AND TRAINING 
Input to the CNN-model is organized as input-maps. For the 

Equation (1) represents a convolution operation Wm * fn by a single filter Wm over receptive-blocks fn of the input- 

mapFr*s. Similarly, activation maps corresponding to all filters in the filter bank can be generated via convolution in 

equation 2 followed by non-linear activation operator σ. Now, the pooling operation is independently applied on 

each of these convolution-based activation-maps. It is usually a simple function such as maximization or averaging 

and serves as generalizations over the features of the convolution map. The pooling size parameter determines the 

invariance of the convolution layer filters to small frequency shifts in the spectal representation of vibration signals. 

Hence, serve as small shift invariance over the local region that is determined by pooling size parameter. The max-

pooling function is used as: 

9. MODEL VALIDATION 
A bearing-fault data-set provided by Case Western Reserve University [28] is used to validate the proposed model. The data-set consists 

of vibration signals that were collected from an experimental test-rig, as shown in Figure 3. The test-rig apparatus consist of a 2-hp 

motor, a torque transducer and a dynamometer. The motor shaft was supported by 6205-2RS JEM SKF bearings. The three bearing 

components under study are (1) the inner race (IR), (2) the outer race (OR) and 

(3) the rolling element, the ball (B). Single-point faults ranging in diameter from 0.007 to 0.028 inches were artificially seeded into 
each of the above-mentioned bearing element at both drive and fan end of the motor drive. For the faults localized to the IR, the B 

rolling element and the OR, the accelerometers are arranged in the dead-end position at 12 o’clock, 6 o’clock and 3 o’clock, 

respectively. Vibration signals from three channels were sampled at 12 kHz and in some cases at 48kHz. Figure 4 shows the vibration 

samples of different bearing health conditions. A dataset comprising vibration signals from healthy and three faulty bearing conditions 
is used for analysis. For each fault type, the vibration-data is collected against three different fault-sizes. A MCNN-SDAE model is 

trained on healthy and faulty training samples with parameters listed in Table 1. Different fault- types, fault-sizes and corresponding 

data-samples for training and testing are detailed in Table 2. 
 

Figure 3 Experimental test-rig to collect benchmark vibration data corresponding to various bearing faults. various bearing 

faults. 
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Figure 4 Vibration signals depicting different bearing fault-types. 

Table 1 Hybrid-model parameters. 
 

MCNN Parameters 

No. of CNN-layers 

(convolution and pooling 

pairs) 

2 

Input-map size 𝐹𝑟*𝑠 ( No. of 

vibration-signal frames ) 

s=10 

Block size ( 𝑖 × j ) of input 

receiptive field 𝑓 

𝑓𝑖×j=[100x5] 

Receptive Window 

overlapping 

[50x2] 

No. of Feature-Kernels/filters 

(𝑊) 

K=20 for layer 1 

K=30 for layer 2 

SDAE Parameters 

No. of layers in the Stack 3 

Configuration of layers (No. 

of neurons) 

700-500-300 

Corruption-type for 

denoising. 

Gaussian Noise (% of 

nominal value)= [20%] 

Noise level (Corrupted Input 

fraction) 

[15-30]% 

 

10. CONCLUSION 

11. The trained MCNN-SDAE was compared against deep-models based on WPT-DBN[50] and TDSF-

DBN[52], as well as shallow-models based on WPT-ANN[47], WPT-SVM[41], and TDSF-SVM. 

The test accuracies of all models are evaluated using a five-fold cross-validation process, as shown 

in table 3. In comparison to the competing approaches, the suggested hybrid achieved an average 

accuracy of 99.81% for inner race and ball-element faults, 100% for individual errors, and 99.4% for 

out-race faults, as shown in table 3.  

Classification accuracies at varied noise-levels and frequency-shifts in both healthy and defective 

vibration signals were used to further test the resilience of the hybrid model. We tested all of the 

models with varying levels of artificial noise, ranging from 15 dB to 10 dB, and averaged their test 

accuracies. The following steps are taken to ensure that frequency shift-invariance is valid. 

 

1- Calculate ball pass frequency for inner and outer race faults (BPFO, BPFI) and ball spin frequency (BSF) for rolling-element 
assuming no-slip condition. 

2- Take FFT of the samples from all three fault-types. 
3- Identify the corresponding fault-frequency (i.e. BPFO, BPFI,BSF) in the frequency spectrum of related fault-type (e.g. inner-

race, outer-race or rolling element faults). 
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4- Take a frequency band of 100Hz centered at corresponding fault-frequency (i.e. BPFO, BPFI, and BSF) in the frequency spectrum 

and shift it by offsetting it by gap of 5, 10 or 15Hz. 

5- Take the inverse FFT and used the new vibration signal to calculate features corresponding to each model. 

6- Calculate average classification-accuracy. 

The classification-accuracies of different feature-classifier models against varying noise-levels are reported in table 4. A general trend of 
decrease in classification-accuracies with increasing noise-level is observed for all models. A minimum classification accuracy of 94.6% is 

achieved by hybrid-model against 10db SNR which is the highest accuracy among all compared models. Similarly in table 5, a maximum 

1% decrease in classification accuracy of hybrid MCNN-SDAE model is observed against a shift in fault-frequency with an offset of 15Hz. 
However, the classification accuracy of other models decreased by 2-3% against frequency shift with 15Hz offset. The results in table 4 and 

table 5 show that the hybrid MCNN-SDAE model is robust to noise in vibration signals and small frequency-shifts caused by slipping of 

roll-bearing. 

 
  

 
Blocks of vibration-filter 

Figure 5 Each block depicts a spectral representation of first-layer CNN-filters learnt by the model. A single block represents 

spectogram corresponding to 20 base-filters learnt by the CNN. Each filter represents a salient vibration-pattern learnt from 

training-data. A particular bearing-fault is modeled as a combination of these base vibration-features via higher-order layers in 

MCNN- SDAE model. 
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22. APPENDIX 

Table 2 Description of different bearing fault-types included in the benchmark data-set 

 

Items Health Fault 1 
 

Fault 2 
 

Fault 3 
 

 

Fault Location 

 
None 

Outer 

Race 

Outer 

Race 

Outer 

Race 

Inner 

Race 

Inner 

Race 

Inner 

Race 

 
Bearing 

 
Bearing 

 
Bearing 

Motor Speed 

(RPM) 

1730,1750 

1772, 1797 

1730,1750, 

1772, 1797 

1730,1750, 

1772, 1797 

1730,1750, 

1772, 1797 

 

Fault Size 0 0.007” 
0.014 

” 
0.024” 0.007” 0.014” 0.021” 0.007” 0.014” 0.021” 

Testing Samples 50 50 50 50 50 50 50 50 50 100 

Training Samples 50 50 50 50 50 50 50 50 1000 1000 

 

 

Table 3 Bearing-fault classification accuracies of different models. 

 

Health Condition (5-fold Cross Validated) 

 
MCNN- 

SDAE 

TDSF- 

DBN 

WPT-DBN WPT-ANN WPT-SVM TDSF-SVM 

Inner-Race fault 100% 96.2% 98.1% 95.3% 95.7% 95.6% 

Outer-Race fault 99.4% 98.7% 97.4% 96.5% 97.6% 92.5% 

Ball-fault 100% 99% 99.1% 98.9% 98.3% 97.4% 

Average Accuracy 99.81% 97.96% 98.2% 96.9% 97.2% 95.1% 

 

 

Table 4 Accuracies of Classifier-models tested against increasing noise-levels in vibration signal. 

 

(5-fold Cross Validated) 

SNR (Signal to 

Noise Ratio) 

 

MCNN-SDAE 

 

TDSF-DBN 

 

WPT-DBN 

 

WPT-ANN 

 

WPT-SVM 

 

TDSF-SVM 

15dB 99.1% 96.4% 97.1% 95% 96.2% 93.6% 

14dB 98.6% 95.7% 96.6% 93.7% 94.9% 91.3% 

13dB 97.7% 95% 95.8% 92.8% 93.5% 89.5% 
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12dB 96.2% 93.8% 94.1% 92% 92.2% 87.6% 

11dB 95.3% 92.7% 93.4% 90.2% 91.1% 85.2% 

10dB 94.6% 91.6% 92.2% 88.3% 89.4% 82.6% 

 

 

 

 

Table 5 Accuracies of classifier models tested against small shifts in corresponding bearing-fault related frequencies. 

 

(Five-fold Cross Validated) 

Spectrum Shift 

Offset 

(BPFO,BPFI, 

BSF) +Offset 

MCNN-SDAE TDSF-DBN WPT-DBN WPT-ANN WPT-SVM TDSF-SVM 

5Hz 99.53% 96.83% 97.6% 96% 96.5% 95% 

10Hz 99.23% 96.33% 96.8% 95.1% 95.3% 94.3% 

15Hz 98.7% 95.7% 96.35% 94.3% 94.6% 92.7% 
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